MLDCBS1X2-R2

GPS Mini Passive 1X2 Splitter Technical Product Data

Features

- Precise Amplitude Balance
 - Less than 1 dB variation between ports.
- Flat Group Delay
 - Less than 1ns variation between L1 and L2.
- Low Insertion Loss
 - -3.5 dB loss is typical across all operating frequencies.
- Wide Accepted Frequency Range
 - Accepts signals from the entire L-Band, covering all major GNSS constellations.
- Efficiently Blocked Ports
 - \circ Uses 200Ω resistor to prevent antenna alarm faults from connected devices.
- Matched Phase Balance
 - Less than 2° of variation between ports.
- Smallest GPS Antenna Splitter in the World!

Description

This **M**ini **L**oaded **DC B**locked **S**plitter **1X2** (**MLDCBS1X2-R2**) is a passive one input, two output RF splitter that splits signals from 1.1 GHz to 1.7 GHz. This equipment is designed to passively split signals within the L-band to provide multiple devices with the signal from a single antenna. In the standard configuration, the J1 port will pass DC voltage from a connected device and pass this power to the antenna or other devices upline from the splitter. The other port (J2) is DC blocked and loaded with a 200Ω resistor to simulate antenna current draw which prevents antenna alarm faults.

Use Cases

- Splitting a roof antenna signal between 2 GPS/GLONASS/GNSS receivers.
- Splitting a WAAS antenna between WAAS receiver and ADS-B.
- Splitting a roof antenna signal to 2 passive antennas to re-radiate from 2 antennas.
- Usable as a smaller part in larger signal distribution network.

MLDCBS1X2-R2

Electrical Specifications, TA=25°C

General Specification

Parameter	Notes	Min	Тур	Max	Units
Frequency Range	Covers all major GNSS constellations.	1.1		1.7	GHz
Characteristic Impedance	Unused ports should be terminated with 50Ω loads.		50		Ω

GPS L1 & L2 RF Specification (1)

Parameter	Notes	Min	Тур	Max	Units
Input SWR	Input Standing Wave Ratio: S11			2.0:1	-
Output SWR	Output Standing Wave Ratio: S22			2.0:1	-
Insertion Loss	The loss that occurs from the input port to any output port: S21	-3	-3.5	-4.5	dB
Gain Flatness	The difference in loss or gain between the L1 and L2 frequencies.		0.25	1.0	dB
Amplitude Balance	The difference in gain or loss between each output port.		0.1	1.0	dB
Phase Balance	The difference in phase variation between each output port.		1.0	2.0	deg
Isolation	The amount of attenuation between two output ports.	L1:22 L2:15	L1:28.4 L2:17.3		dB
Group Delay Flatness	The difference in signal delay between the L1 and L2 frequencies.		0.5	1.0	ns

^{(1):} Performance may be slightly reduced around GPS L5. If working on sensitive L5 applications, please request performance data.

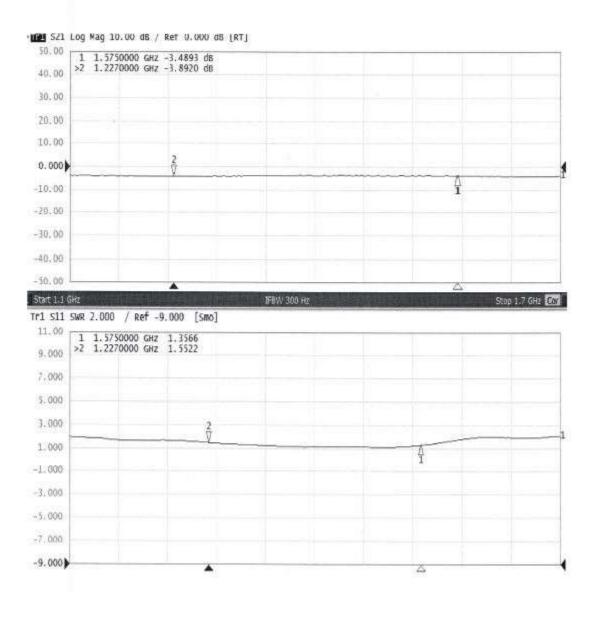
Standard DC Configuration without External Power Option				
J1/Output 1 Pass DC, J2/Output 2 Block DC, Input Port Pass DC				
200Ω loads standard for all DC Blocked outputs				
User selected output DC voltage				
RF Connector Options				
Connector Options	Connector Style	Charge		
	Type SMA-female	No Charge		

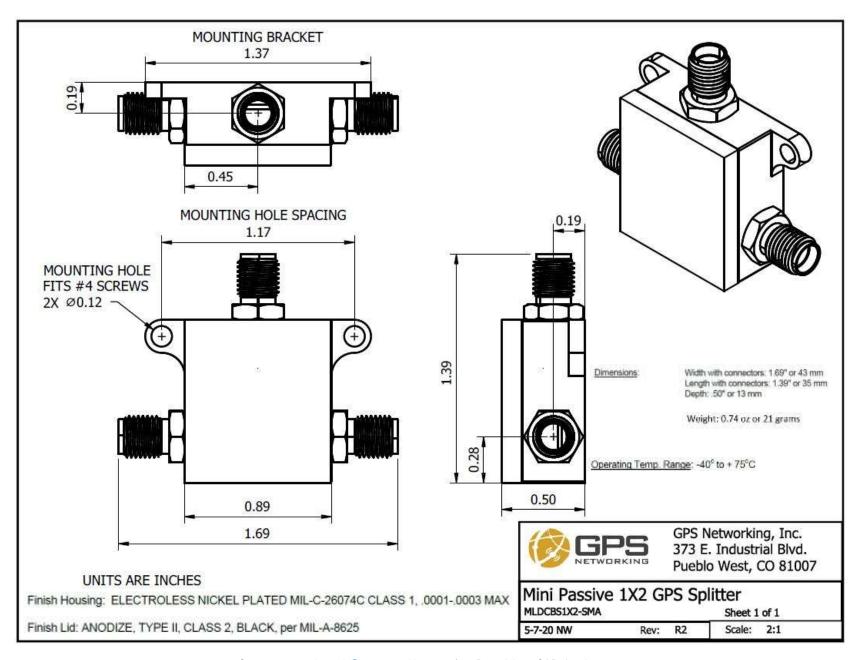
Part Number Configuration

Part Number Configuration

<u>н</u> s	<u> WMLDCBS1X2-R2-Ş</u>
Hermetically Sealed: HS = Hermetically Sealed; Blank = Std	
Weatherproofed: W = Weatherproofed; Blank = Std —	
Loaded DC Blocked Outputs: MLDCBS = Mini Loaded DCB Splitter—	
Splitter Type: 1X2 = GPS Splitter 2 Outputs	
Revision: R2 = Revision 2	
Connector Options (Type Female): S = SMA	

MLDCBS1X2-R2




Performance

MLDCBS1X2-R2 Standard Gain Typical

Each MLDCBS1X2-R2 ships with a test sheet that verifies critical performance characteristics, such as gain, input VSWR, and amplitude balance; a typical VNA test sheet is shown below.

